Building a Better Network :

A technical discussion on how HVDC can enable a more stable network whilst integrating renewable generation (3 of 4 webinars)

5th November 2021

Considering a lot of participants are expected, it may not be possible to address all questions or comments live however we will do our best.

Agenda:

- **1**. Introductions
- 2. Overview of the HVDC Centre
- 3. Context
- 4. Video: A technical discussion on how HVDC can enable a more stable network whilst integrating renewable generation.
- 5. Panel Discussion

The National HVDC Centre - About us

Overview of the HVDC Centre: the Team

A team of HVDC experts; providing experience across: academia, system operator, power systems consultancy, transmission innovation and HVDC manufacturers.

Ben Marshall HVDC Technology Manager

Simon Marshall MA Centre Manager

lan Cowan MEng MIET Lead Simulation Engineer

Bharath Ponnalagan CEng MIET

Colin Cameron

Dr Linda Rowan Technical Project Officer

Habibur Rahman Simulation Engineer

Nikhil Sharma Simulation Engineer

Fabian Moore Simulation Engineer

Panel Discussion

Panel members

Prof. Tim Green, Director of Energy Futures Lab and Professor, Imperial College London

Ben Marshall, HVDC Technology Manager, The National HVDC Centre

Perry Hoffbauer, Principal Power System Engineer, PSC Consulting

Robin Gupta, Net Zero Innovation Manager, National Grid Electricity Transmission

Afshin Pashaei, Power Quality and Dynamic Performance Manager, National Grid Electricity Transmission

Moderator: Bharath Ponnalagan, Simulation Engineering Manager, The National HVDC Centre

Future Webinars

4) HVDC R&D Strategy for Coordinate Offshore: Exploring the innovations required to meet net-zero.
Date: Thursday 11 November 2021
Time: 13:00-14:00 GMT
Click here to register: https://forms.office.com/r/0etQ5natdM

Context

- Changing Generation Mix to meet the Net Zero target
- Decommissioning of large traditional coal power thermal power generators
- Increased presence of converters in generation (Wind farms, Solar etc) and transmission system (HVDC, STATCOM etc)
- Declining Inertia and Short circuit level.
- Increased possibility of interaction (Sub Synchronous, Super Synchronous and Control Interaction)
- HVDC's role in enabling and supporting the integration of renewables.

<u>https://www.ofgem.gov.uk/energy-data-and-research/data-portal/wholesale-market-indicators</u> <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028157/net-zero-strategy.pdf</u> <u>https://www.nationalgrideso.com/document/172396/download</u>

Electricity Generation Mix

Background

Impact of declining Short circuit level (A System Operability Framework Document), National Grid ESO, <u>download (nationalgrideso.com)</u>

- 1. Phase Locked Loop Risk
- 2. Declining Short-circuit level
- Mean Short Circuit Level for scenario System Transformation in different areas
- 4. Annual distribution of the inertia- where this is influences performance- not just the fault current, but its predictability!
- 5. Worsening Protection Performance on decreased Short-circuit level and increased converter penetration

Video: A technical discussion on how HVDC can enable a more stable network whilst integrating renewable generation.

Adaptive Power Oscillation Damping Control via HVDC/FACTS Devices Using Measurement-Driven Model

Purpose of project

- o conventional plant is displaced by new renewable sources
- o new modes and locations of oscillation emerging
- conventional generators remaining may be inappropriate to suppress these modes

Method for the studies

- focuses on the design and demonstration of a wide-area POD controller through HVDC links based on a measurement-driven approach
- A reduced 36-bus GB power grid model was used in this study
- Designed offline then moved to RTS HIL platform to validate proposed solution

Outcomes

- performance of the designed POD controller was validated under different dispatches
- Findings show suppression of the targeted oscillation mode by modulating active power and/or reactive power of the selected HVDC link

Page: 12

Phasor-Based Monitoring with HVDC Control

Current situation

- Variable fault level at Spittal terminal
- Control mode change required for stability
- Offline study fault level analysis used to identify tipping point configurations
- Secondary system breaker position solution being used

Purpose of project

- demonstrate capabilities to use Phasor Measurement Unit (PMU) data to derive real-time indicators of the state of the network.
- used to select an appropriate mode of operation by the HVDC control system.
- prove potential alternative to SSSNOB

Page: 13

Assembling the picture of a future POD control

Page: 14

Thanks for listening. Any questions, please?

□ For further information, please visit www.hvdccentre.com; OR email: info@hvdccentre.com

https://www.hvdccentre.com/technical-films/

Follow us on Twitter **@HVDC_Centre_GB**

Follow our Linkedin page The National HVDC Centre for regular updates.