

Ørsted's journey & learnings of HVDC Connected Offshore Windfarms Kaushik Hore, Ørsted

TRANSMISSION

Ørsted's Journey & Learnings of HVDC Connected Offshore Windfarms

National HVDC Centre Operator's Forum, June 2024

Agenda

Introductions

UK Project

- Hornsea 3
- German Projects
- Borkum Riffgrund 1, 2, & 3
- Gode Wind 1, 2, & 3
- US Project
- Sunrise Wind

Introductions

Kaushik Hore

- Design & Compliance Manager HOW03
- Joined Ørsted: July 2020
- Living in DK since 2019 with wife and 2-year old kid
- 2019 2020: Vestas, DK as Lead Engineer
- 2017 2019: Hitachi Energy as Senior Technical Consultant
- 2014 2017: GE as System Design Engineer in HVDC
- Graduated in 2010 from Indian Institute of Technology, Roorkee, India
- Masters in Power System Engineering.

Akshay Prajapati

- Co-Design & Compliance Manager HOW03
- Joined Ørsted: February 2022
- Live in Leicester, UK with parents, wife and 2 kids (6 & 9)
- 2011 2022: National Grid Electricity Transmission, UK
 - Graduate Programme
 - System Design Power Systems Engineer
 - Long Term Planning Plan Optimisation
 - NGV Interconnectors Business Development Manager
- MSc Electrical Power Systems Engineering, University of Manchester, 2018
- MEng Electronics and Communication Engineering, University of Nottingham, 2011

Hornsea 3

UK Market

HOW03 Project

Overview

Key Data and Specifications

	Base Case	
Nameplate Capacity	2758 MW	
Number of Turbines	~200	
Turbine Type	SG 14-236 DD	
Array Voltage	66 kV	
Offshore Substations	2 x 1320 MW HVDC	
Export Voltage	320 kV	
Length of Cable Route (Offshore / Onshore)	165 + 54 km	
Length of array cables	475 km	
Grid Connection Point	Norwich Main (NGET)	
Grid Connection Capacity (TEC)	3GW - staged	
Grid Connection Date	October 2026 (2200MW)	
Grid Connection Date	January 2029 (3000MW)	

Hornsea 3 – Key ESD Challenges

- Ørsted's first large scale HVDC project in UK
 - Grid Connection
 - Staged capacity connection
 - \rightarrow Congested network
 - → Significant reinforcement works around POI
 - Grid Code compliance
 - Control Interactions
 - \rightarrow Other power electronic devices and projects in the vicinity
 - Implementation of GC141
 - Network Modelling challenges
- DC Interconnector
 - Ørsted's first experience of implementing of DC interconnection
 - Complex Operational Philosophy

Borkum Riffgrund & Gode Wind

German Market

Grid Connection Concepts in the German North Sea

155kV Connection w/ OSS BKR01/BKR02 GOW01/GOW02/GOW03

66kV Direct Connection w/o OSS BKR03

Challenges & Lessons Learnt

- Technical assessment methodology alignment (WFO / TSO / HVDC)
 - Alignment between various system elements and interfaces
 - → Protection & control systems, component ratings, harmonic assessments, etc.
- Risk Assessment: WTG & Transmission System (HVDC)
 - No direct interface with HVDC supplier
 - \rightarrow challenges around scope split, programme alignment
 - → SCADA interface
- Interface Clarification
 - Contractual complexities
 - → mainly related to the new 66kV direct Connection Concept (WFO / TSO / HVDC)
- Grid Code Compliance (WFO / TSO / HVDC)
 - No. of GEP (connection points) increased
 - \rightarrow complicated compliance process
- Model Data Availability and Accuracy
 - Exchange of information is challenging

Sunrise Wind

US Market

Project location	BOEM Lease Area 500 – US	Array system voltage	66kV
Project installed capacity at WTG	924MW + 5% power boost	Array cables	XLPE (Prysmian)
WTG	SGRE DD200 11MW + 5% PB	Number of array strings	12
Capacity at onshore POI	924MW	Transmission technology	HVDC Plus (Siemens Energy)
Interconnecting system operator	NYISO	HVDC transmission voltage	±320kV
Interconnecting trans. owner	LIPA	HVDC configuration	Symmetric monopole
Interconnecting trans. operator	PSEG-LI	HVDC cable	XLPE (Nexans)
Onshore POI	Holbrook substation 138kV	HVDC cable length	≈130km offshore + ≈30km onshore

Source: L. Zeni et al. "Sunrise Wind: USA's first HVDC connected offshore wind farm". Accepted for publication at Cigré session 2024, Paris. Paper ID 11589.

ice Wind – Overview

Sunrise Wind – Requirements and solutions

- Onshore harmonics
 - High frequency resonances between 138kV HVAC cables and grid impedance may lead to large IT product
 - \rightarrow Small harmonic filter installed at onshore converter station
- Offshore harmonics
 - Natural resonance of array cable capacitance and WTG and HVDC transformers can lead to high distortions around h10
 - \rightarrow Application of IEEE 519 standard
 - \rightarrow Remove conservatism from modelling
 - \rightarrow Backup: impedance shaping of WTGs
- Onshore dynamic and transient performance
 - HVDC offers robustness in terms of
 - Stability in low short circuit ratio
 - Smooth energization via pre-insertion resistor
 - Decoupling of reactive power control onshore/offshore
- Onshore frequency / active power control
 - → WTG plant controller directly senses onshore frequency to ensure proper active power / frequency control at POI
- Connection at relatively low voltage (POI voltage is 138kV)
 - ightarrow Use of two 138kV circuits with two conductors per phase
 - \rightarrow Generation runback scheme (quickly reduce power to max 50%) for 138kV cable trip

Let's create a world that runs entirely on green energy

